MATHEMATICS

THIRD EDITION

INTERKATIONAL CENTRE OF EXCELLENCE FOR EDUCATION IN
MATHEMATICS

Peter Brown
Michael Evans
Garth Gaudry
David Hunt
Robert McLaren
Bill Pender
Brian Woolacott

UNIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India
79 Anson Road, \#06-04/06, Singapore 079906
Cambridge University Press is part of the University of Cambridge.
It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.
www.cambridge.org
Information on this title: www.cambridge.org/9781108404341

© The University of Melbourne on behalf of the Australian Mathematical Sciences Institute (AMSI) 2017
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017
201918171615141312111098176514312

Cover designed by Loupe Studio
Typeset by diacriTech
Printed in China by C \& C Offset Printing Co. Ltd.
A catalogue record for this book is available from
the National Library of Australia at www.nla.gov.au
ISBN 978-1-108-40434-1 Paperback
Additional resources for this publication at www.cambridge.edu.au/GO
Reproduction and communication for educational purposes
The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this publication, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that the educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact:
Copyright Agency Limited
Level 11, 66 Goulburn Street
Sydney NSW 2000
Telephone: (02) 93947600
Facsimile: (02) 93947601
Email: memberservices@copyright.com.au

Reproduction and communication for other purposes

Except as permitted under the Act (for example a fair dealing for the purposes of study, research, criticism or review) no part of this publication may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All inquiries should be made to the publisher at the address above.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

Preface ix
Author biographies x
How to use this resource xii
The Interactive Textbook and the Online Teaching Suite xiii
Acknowledgements xiv
Chapter 1 Consumer arithmetic 1
1A Review of percentages 2
1B Percentage increase and decrease 11
1C Repeated increases and decreases 18
1D Compound interest 23
1E Compound depreciation 30
Review exercise 35
Challenge exercise 37
Chapter 2 Review of surds 39
2A Irrational numbers and surds 40
2B Addition and subtraction of surds 45
2C Multiplication and division of surds 48
2D Special products 53
2E Rationalising denominators 55
Review exercise 59
Challenge exercise 62
Chapter 3 Algebra review 64
3A Expanding brackets and collecting like terms 65
3B Solving linear equations and inequalities 71
3C More difficult linear equations and inequalities 75
3D Formulas 78
3E Factorising a difference of two squares 82
3F Monic quadratics and grouping 84
3G Non-monic quadratics 86
3H An introduction to algebraic fractions 89
31 Further algebraic fractions 91
Review exercise 97
Challenge exercise 100
Chapter 4 Lines and linear equations 101
4A Distance between two points and midpoint of an interval 102
4B Gradient 106
4C Gradient-intercept form and the general form of the equation of a line 111
4D Point-gradient form of an equation of a line 117
4E Review of simultaneous linear equations 121
4F Solving word problems using simultaneous equations 128
Review exercise 130
Challenge exercise 132
Chapter 5 Quadratic equations 135
5A Solution of quadratic equations 136
5B Rearranging to standard form 141
5C Applications of quadratic equations 143
5D Perfect squares and completing the square 146
5E Solving quadratic equations by completing the square 149
5F The quadratic formula 153
Review exercise 159
Challenge exercise 161
Chapter 6 Surface area and volume 163
6A Review of prisms and cylinders 164
6B Pyramids 174
6C Cones 178
6D Spheres 184
6E Enlargement 187
Review exercise 193
Challenge exercise 196
Chapter 7 The parabola 198
7A Parabolas congruent to $y=x^{2}$ 199
7B Sketching the graph of the quadratic $y=a x^{2}+b x+c$, where $a= \pm 1$ 206
7C The general quadratic $y=a x^{2}+b x+c$ 211
7D Symmetry and factorisation 218
7E Sketching via the discriminant 221
7F Applications involving quadratics 224
7G Quadratic inequalities 227
Review exercise 229
Challenge exercise 232
Chapter 8 Review of congruence and similarity 235
8A Review of triangles 236
8B Congruence 238
8C Enlargements and similarity 244
8D Similarity and intervals within a triangle 253
Review exercise 255
Challenge exercise 257
Chapter 9 Indices, exponentials and logarithms - part 1 259
9A Review of powers and integer indices 260
9B Scientific notation and significant figures 264
9C Powers with rational indices 270
9D Graphs of exponential functions 276
9E Exponential equations 279
9F Exponential growth and decay 283
9G Logarithms 287
Review exercise 290
Challenge exercise 292
Chapter 10 Review and problem-solving 294
10A Review 295
10B Miscellaneous questions 309
10C Problem-solving 316
Chapter 11 Circles, hyperbolas and simultaneous equations 319
11A Cartesian equation of a circle 320
11B The rectangular hyperbola 325
11C Intersections of graphs 330
11D Regions of the plane 335
Review exercise 341
Challenge exercise 342
Chapter 12 Further trigonometry 345
12A Review of the basic trigonometric ratios 346
12B Exact values 350
12C Three-dimensional trigonometry 352
12D The sine rule 357
12E Trigonometric ratios of obtuse angles 362
12F The cosine rule 367
12G Finding angles using the cosine rule 370
12H Area of a triangle 372
Review exercise 376
Challenge exercise 377
Chapter 13 Circle geometry 379
13A Angles at the centre and the circumference 380
13B Angles at the circumference and cyclic quadrilaterals 387
13C Chords and angles at the centre 392
13D Tangents and radii 398
13E The alternate segment theorem 405
13F Similarity and circles 408
Review exercise 413
Challenge exercise 415
Chapter 14 Indices, exponentials and logarithms - part 2 417
14A Logarithm rules 418
14B Change of base 423
14C Graphs of exponential and logarithm functions 426
14D Applications to science, population growth and finance 430
Review exercise 434
Challenge exercise 436
Chapter 15 Probability 437
15A Review of probability 438
15B The complement, union and intersection 444
15C Conditional probability 451
15D Independent events 456
15E Sampling with replacement and without replacement 460
Review exercise 468
Challenge exercise 469
Chapter 16 Direct and inverse proportion 471
16A Direct proportion 472
16B Inverse proportion 477
16C Proportionality in several variables 482
Review exercise 486
Challenge exercise 487
Chapter 17 Polynomials 488
17A The language of polynomials 489
17B Adding, subtracting and multiplying polynomials 493
17C Dividing polynomials 495
17D The remainder theorem and factor theorem 501
17E Factorising polynomials 505
17F Polynomial equations 508
17G Sketching polynomials 511
17H Further sketching of polynomials 516
Review exercise 517
Challenge exercise 519
Chapter 18 Statistics 520
18A The median and the interquartile range 521
18B Boxplots 526
18C Boxplots, histograms and outliers 529
18D The mean and the standard deviation 535
18E Interpreting the standard deviation 540
18F Time-series data 544
18G Bivariate data 547
18 H Line of best fit 552
Review exercise 557
Chapter 19 Trigonometric functions 560
19A Angles in the four quadrants 561
19B Finding angles 570
19C Angles of any magnitude 572
19D The trigonometric functions and their symmetries 574
19E Trigonometric equations 579
Review exercise 581
Challenge exercise 582
Chapter 20 Functions and inverse functions 584
20A Functions and domains 585
20B Inverse functions 591
20C Function notation and the range of a function 594
20D Transformations of graphs of functions 597
20E Composites and inverses 601
Review exercise 607
Challenge exercise 608
Chapter 21 Review and problem-solving 609
21A Review 610
21B Problem-solving 622
Answers 627

Preface

ICE-EM Mathematics Third Edition is a series of textbooks for students in years 5 to 10 throughout Australia who study the Australian Curriculum and its state variations.

The program and textbooks were developed in recognition of the importance of mathematics in modern society and the need to enhance the mathematical capabilities of Australian students. Students who use the series will have a strong foundation for work or further study.

Background

The International Centre of Excellence for Education in Mathematics (ICE-EM) was established in 2004 with the assistance of the Australian Government and is managed by the Australian Mathematical Sciences Institute (AMSI). The Centre originally published the series as part of a program to improve mathematics teaching and learning in Australia. In 2012, AMSI and Cambridge University Press collaborated to publish the Second Edition of the series to coincide with the introduction of the Australian Curriculum, and we now bring you the Third Edition.

The series

ICE-EM Mathematics Third Edition provides a progressive development from upper primary to middle secondary school. The writers of the series are some of Australia's most outstanding mathematics teachers and subject experts. The textbooks are clearly and carefully written, and contain background information, examples and worked problems.

For the Third Edition, the series has been carefully edited to present the content in a more streamlined way without compromising quality. There is now one book per year level and the flow of topics from chapter to chapter and from one year level to the next has been improved.

The year 10 textbook incorporates all material for the 10A course, and selected topics in earlier books carefully prepare students for this. ICE-EM Mathematics Third Edition provides excellent preparation for all of the Australian Curriculum's year 11 and 12 mathematics courses.

For the Third Edition, ICE-EM Mathematics now comes with an Interactive Textbook: a cutting-edge digital resource where all textbook material can be answered online (with students' working-out), additional quizzes and features are included at no extra cost. See 'The Interactive Textbook and Online Teaching Suite' on page xiii for more information.

Author biographies

Peter Brown

Peter Brown studied Pure Mathematics and Ancient Greek at Newcastle University, and completed postgraduate degrees in each subject at the University of Sydney. He worked for nine years as a mathematics teacher in NSW State schools. Since 1990, he has taught Pure Mathematics at the School of Mathematics and Statistics at the University of New South Wales (UNSW). He was appointed Director of First Year Studies at UNSW from 2011 to 2015. He specialises in Number Theory and History of Mathematics and has published in both areas. Peter regularly speaks at teacher inservices, Talented Student days and Mathematics Olympiad Camps. In 2008 he received a UNSW Vice Chancellor's Teaching Award for educational leadership.

Michael Evans

Michael Evans has a PhD in Mathematics from Monash University and a Diploma of Education from La Trobe University. He currently holds the honorary position of Senior Consultant at the Australian Mathematical Sciences Institute at the University of Melbourne. He was Head of Mathematics at Scotch College, Melbourne, and has also taught in public schools and in recent years has returned to classroom teaching. He has been very involved with curriculum development at both state and national levels. In 1999, Michael was awarded an honorary Doctor of Laws by Monash University for his contribution to mathematics education, and in 2001 he received the Bernhard Neumann Award for contributions to mathematics enrichment in Australia.

Garth Gaudry

Garth Gaudry was Head of Mathematics at Flinders University before moving to UNSW, where he became Head of School. He was the inaugural Director of AMSI before he became the Director of AMSI's International Centre of Excellence for Education in Mathematics. Previous positions include membership of the South Australian Mathematics Subject Committee and the Eltis Committee appointed by the NSW Government to enquire into Outcomes and Profiles. He was a life member of the Australian Mathematical Society and Emeritus Professor of Mathematics, UNSW.

David Hunt

David Hunt graduated from the University of Sydney in 1967 with an Honours degree in Mathematics and Physics, then obtained a master's degree and a doctorate from the University of Warwick. He was appointed to a lectureship in Pure Mathematics at UNSW in early 1971, where he is currently an honorary Associate Professor. David has taught courses in Pure Mathematics from first year to master's level and was Director of First Year Studies in Mathematics for five years. Many of David's activities outside UNSW have centred on the Australian Mathematics Trust. These contributions as well as those to the International Mathematical Olympiad movement were recognised by the award of the Paul Erdos medal in 2016.

Robert McLaren

Robert McLaren graduated from the University of Melbourne in 1978 with a Bachelor of Science (Hons) and a Diploma of Education. He commenced his teaching career in 1979 at The Geelong College and has taught at a number of Victorian Independent Schools throughout his career. He has been involved in textbook writing, curriculum development and VCE examination setting and marking during his teaching life. He has taught mathematics at all secondary levels and has a particular interest in problem solving. Robert is currently Vice Principal at Scotch College in Melbourne.

Bill Pender

Bill Pender has a PhD in Pure Mathematics from Sydney University and a BA (Hons) in Early English from Macquarie University. After a year at Bonn University, he taught at Sydney Grammar School from 1975 to 2008, where he was Subject Master for many years. He has been involved in the development of NSW Mathematics syllabuses since the early 1990s, and was a foundation member of the Education Advisory Committee of AMSI. He has also lectured and tutored at Sydney University and at UNSW, and given various inservice courses. Bill is the lead author of the NSW calculus series Cambridge Mathematics.

Brian Woolacott

Brian Woolacott graduated from the University of Melbourne in 1978 with a Bachelor of Science and a Diploma of Education. In 1979 he started his teaching career at Scotch College, Melbourne, and during his career he has taught at all secondary levels. For 13 years, Brian was the Co-ordinator of Mathematics for Years 9 and 10, and during this time he was involved in co-authoring a number of textbooks for the Year 9 and 10 levels. Brian is currently the Dean of Studies at Scotch College.

How to use this resource

The textbook

Each chapter in the textbook addresses a specific Australian Curriculum content strand and set of sub-strands. The exercises within chapters take an integrated approach to the concept of proficiency strands, rather than separating them out. Students are encouraged to develop and apply Understanding, Fluency, Problem-solving and Reasoning skills in every exercise.
The series places a strong emphasis on understanding basic ideas, along with mastering essential technical skills. Mental arithmetic and other mental processes are major focuses, as is the development of spatial intuition, logical reasoning and understanding of the concepts.
Problem-solving lies at the heart of mathematics, so ICE-EM Mathematics gives students a variety of different types of problems to work on, which help them develop their reasoning skills. Challenge exercises at the end of each chapter contain problems and investigations of varying difficulty that should catch the imagination and interest of students. Further, two 'Review and Problem-solving' chapters in each 7-10 textbook contain additional problems that cover new concepts for students who wish to explore the subject even further.

The Interactive Textbook and Online Teaching Suite

Included with the purchase of the textbook is the Interactive Textbook. This is the online version of the textbook and is accessed using the 16 -character code on the inside cover of this book.

The Online Teaching Suite is the teacher version of the Interactive Textbook and contains all the support material for the series, including tests, worksheets, skillsheets, curriculum documentation and more.

For more information on the Interactive Textbook and Online Teaching Suite, see page xiii.
The Interactive Textbook and Online Teaching Suite are delivered on the Cambridge HOTmaths platform, providing access to a world-class Learning Management System for testing, task management and reporting. They do not provide access to the Cambridge HOTmaths stand-alone resource that you or your school may have used previously. For more information on this resource, contact Cambridge University Press.

AMSI's TIMES and SAM modules

The TIMES and SAM web resources were developed by the ICE-EM Mathematics author team at AMSI and are written around the structure of the Australian Curriculum. These resources have been mapped against your ICE-EM Mathematics book and are available to teachers and students via the AMSI icon on the Dashboard of the Interactive Textbook and Online Teaching Suite.

The Interactive Textbook and the Online Teaching Suite

Interactive Textbook

The Interactive Textbook is the online version of the print textbook and comes included with purchase of the print textbook. It is accessed by first activating the code on the inside cover. It is easy to navigate and is a valuable accompaniment to the print textbook.

Students can show their working

All textbook questions can be answered online within the Interactive Textbook. Students can show their working for each question using either the Draw tool for handwriting (if they are using a device with a touch-screen), the Type tool for using their keyboard in conjunction with the pop-up symbol palette, or by importing a file using the Import tool.

Once a student has completed an exercise they can save their work and submit it to the teacher, who can then view the student's working and give feedback to the student, as they see appropriate.

Auto-marked quizzes

The Interactive Textbook also contains material not included in the textbook, such as a short auto-marked quiz for each section. The quiz contains 10 questions which increase in difficulty from question 1 to 10 and cover all proficiency strands. There is also space for the student to do their working underneath each quiz question. The auto-marked quizzes are a great way for students to track their progress through the course.

Additional material for Year 5 and 6

For Years 5 and 6, the end-of-chapter Challenge activities as well as a set of Blackline Masters are now located in the Interactive Textbook. These can be found in the 'More resources' section, accessed via the Dashboard, and can then easily be downloaded and printed.

Online Teaching Suite

The Online Teaching Suite is the teacher's version of the Interactive Textbook. Much more than a 'Teacher Edition', the Online Teaching Suite features the following:

- The ability to view students' working and give feedback - When a student has submitted their work online for an exercise, the teacher can view the student's work and can give feedback on each question.
- For Years 5 and 6, access to Chapter tests, Blackline Masters, Challenge exercises, curriculum support material, and more.
- For Years 7 to 10, access to Pre-tests, Chapter tests, Skillsheets, Homework sheets, curriculum support material, and more.
- A Learning Management System that combines task-management tools, a powerful test generator, and comprehensive student and whole-class reporting tools.

Acknowledgements

We are grateful to Professor Peter Taylor OA, former Director of the Australian Mathematical Trust, for his support and guidance as chairman of the Australian Mathematical Sciences Institute Education Advisory Committee, 2003-2011.

We gratefully acknowledge the major contributions made by those schools that participated in the Pilot Program during the development of the ICE-EM Mathematics program.
We also gratefully acknowledge the assistance of:
Sue Avery
Robin Bailey
Claire Ho
Jacqui Rammagge
Nikolas Sakellaropolous
James Wan

We also gratefully acknowledge the hard work and professionalism of Mark Jelinek in the development and editing of this Third Edition.

CHAPTER

Consumer arithmetic

This chapter reviews some important practical financial topics, such as investing and borrowing money, income tax and GST, inflation, depreciation, profits and losses, discounts and commissions. Formulas for compound interest and depreciation are introduced.

Everything in this chapter requires calculations with percentages. We are assuming that you are using a calculator, so we have made little attempt to set questions where the numbers work out nicely.

Nevertheless, you should always look over your work and check that the answers to your calculations are reasonable and sensible.

When the calculator displays numbers with many decimal places, you will need to round the answer in some way that is appropriate in the context of the question. This is an important skill in everyday life.

1 A
 Review of percentages

We first review the calculation techniques involving percentages, which you have learned in previous years.

- To convert a percentage to a decimal, move the decimal point two places to the left. For example:

$$
27 \%=0.27
$$

- To convert a percentage to a fraction, multiply by $\frac{1}{100}$. For example:

$$
27 \%=\frac{27}{100} \quad \text { and } \quad 2 \frac{1}{2} \%=\frac{2 \frac{1}{2}}{100}=\frac{5}{200}=\frac{1}{40}
$$

- To convert a decimal or a fraction to a percentage, multiply by 100%. For example:

$$
\begin{array}{rlrl}
0.35 & =0.35 \times 100 \% \quad \text { and } \quad \frac{3}{5} & =\frac{3}{5} \times 100 \% \\
& =35 \% & & =60 \%
\end{array}
$$

- To find a percentage of a quantity, convert the percentage to a decimal or a fraction, and then multiply the quantity by it. For example:

$$
\begin{array}{rlrl}
3.5 \% \text { of } 1250 & =1250 \times 0.035 \text { or } 3.5 \% \text { of } 1250 & =1250 \times \frac{35}{1000} \\
& =43.75 & & =43 \frac{3}{4}
\end{array}
$$

- To calculate the percentage that one quantity, a, is of another quantity, b :
- first convert both quantities to the same unit of measurement
- then form the fraction $\frac{a}{b}$ and multiply it by 100%.

For example, to express 32 cm as a percentage of 2.4 m :
First, write $2.4 \mathrm{~m}=240 \mathrm{~cm}$
Then $\frac{32}{240} \times \frac{100}{1} \%=13 \frac{1}{3} \%$
So 32 cm is $13 \frac{1}{3} \%$ of 2.4 m

Finding the original amount

We now introduce another important method that will be used with percentages throughout this chapter.

- To find the original amount, given 12% of it, divide by 12%.

Example 1

Ken saves 12% of his after-tax salary every week. If he saves $\$ 108$ a week, what is his after-tax salary?

Solution

Savings $=$ after-tax salary $\times 12 \%$
Reversing this:

$$
\begin{aligned}
\text { After-tax salary } & =\text { savings } \div 12 \% \\
& =\text { savings } \div 0.12 \quad \text { (Replace } 12 \% \text { by } 0.12 .) \\
& =108 \div 0.12 \\
& =\$ 900
\end{aligned}
$$

This technique of writing the percentage factor on the right and reversing the process using division is needed in many practical situations. It will be applied throughout this chapter to commissions, profit and loss, income tax and interest.

Commission

A commission is a fee that is charged by an agent who sells goods or services on behalf of someone else. The person who owns the goods or services is called the vendor, and the commission charged is usually determined as a percentage of the selling price.

Example 2

The Dandy Bay Gallery charges a commission of 8.6% on the selling price.
a An antique vase was sold recently for $\$ 18000$. How much did the gallery receive, and how much was left for the vendor?
b The gallery received a commission of $\$ 215$ for selling a painting. What was the selling price of the painting, and what did the vendor actually receive?

Solution

a Commission $=18000 \times 8.6 \%$

$$
\begin{aligned}
& =18000 \times 0.086 \\
& =\$ 1548
\end{aligned}
$$

Amount received by vendor $=18000-1548$

$$
=\$ 16452
$$

b Commission $=$ selling price $\times 8.6 \%$
Reversing this:
Selling price $=$ commission $\div 8.6 \%$

$$
\begin{aligned}
& =215 \div 0.086 \\
& =\$ 2500
\end{aligned}
$$

Amount received by vendor $=2500-215$

$$
=\$ 2285
$$

Profit and loss as percentages

Is an annual profit of $\$ 20000$ a great performance or a modest performance? For a business with annual sales of $\$ 100000$, such a profit would be considered very large. For a business with annual expenditure of $\$ 100000000$, however, it would be considered a very poor performance.
For this reason, it is often convenient to express profit and loss as percentages of the total costs.

Example 3

The owners of Budget Shoe Shop spent $\$ 6600000$ last year buying shoes and paying salaries and other expenses. They made a 2% profit on these costs.
a What was their profit last year?
b What was the total of their sales?
c In the previous year, their costs were $\$ 5225000$ and their sales were only $\$ 5145000$. What percentage loss did they make on their costs?
d Two years ago their costs were $\$ 5230000$ and their sales were $\$ 6125000$. What percentage profit did they make on their costs?

Solution

$$
\text { a Profit } \begin{aligned}
& =6600000 \times 2 \% \\
& =6600000 \times 0.02 \\
& =\$ 132000
\end{aligned}
$$

b Total sales $=$ total costs + profit
$=6600000+132000$
= \$6732000
c Last year, loss $=$ total costs - total sales

$$
\begin{aligned}
& =5225000-5145000 \\
& =\$ 80000
\end{aligned}
$$

Percentage loss $=\frac{80000}{5225000} \times \frac{100}{1} \%$
$\approx 1.53 \%$ (Correct to the nearest 0.01%.)
$\left[\begin{array}{rl}\text { Alternatively, profit } & =\text { total sales }- \text { total costs } \\ & =5145000-5225000 \\ & =-\$ 80000 \\ \text { Percentage change } & \approx-1.53 \% \\ & =1.53 \% \text { loss }\end{array}\right]$
d Profit $=$ total sales - total costs

$$
\begin{aligned}
& =6125000-5230000 \\
& =\$ 895000
\end{aligned}
$$

Percentage profit $=\frac{895000}{5230000} \times \frac{100}{1} \%$
$\approx 17.11 \%$ (Correct the nearest 0.01%.)

Example 4

Andrew's paint shop made a profit of 6.4% on total costs last year. If the actual profit was $\$ 87000$, what were the total costs, and what were the total sales?

Solution

Profit $=$ costs $\times 6.4 \%$
Reversing this, costs $=$ profit $\div 6.4 \%$

$$
\begin{aligned}
& =87000 \div 0.064 \\
& =\$ 1359375
\end{aligned}
$$

Hence, total sales $=$ profit + costs

$$
\begin{aligned}
& =87000+1359375 \\
& =\$ 1446375
\end{aligned}
$$

Income tax

Income tax rates are often progressive. This means that the more you earn, the higher the rate of tax you pay on each extra dollar earned.
Australian income tax rates are progressive, but they often change, so here is an example using the rates of the fictional nation of Plusionta, where taxation rates have not changed for many years.

Example 5

Income tax in the fictional nation of Plusionta is calculated as follows.

- There is no tax on the first $\$ 12000$ that a person earns in any one year.
- From \$12001 to \$30 000, the tax rate is 15 c for each dollar over $\$ 12000$.
- From $\$ 30001$ to $\$ 75000$, the tax rate is 25 c for each dollar over $\$ 30000$.
- For incomes exceeding $\$ 75000$, the tax rate is 35 c for each dollar over $\$ 75000$.

Find the income tax payable by a person whose taxable income for the year is:
a $\$ 10500$
b $\$ 26734$
c $\$ 72000$
d $\$ 455000$

Solution

a There is no tax.
b Tax on first $\$ 12000=\$ 0$
Tax on remaining \$14734
$=14734 \times 0.15$
$=\$ 2210.10$
This is the total tax payable.
(continued over page)
c Tax on first $\$ 12000=\$ 0$
Tax on next $\$ 18000$
$=18000 \times 0.15$
$=\$ 2700$
Tax on remaining \$42000
$=42000 \times 0.25$
$=\$ 10500$
Total tax $=2700+10500$
= \$13200
d Tax on first $\$ 12000=\$ 0$
Tax on next $\$ 18000=\$ 2700$
Tax on next $\$ 45000$
$=45000 \times 0.25$
$=\$ 11250$
Tax on remaining \$380 000

$$
\begin{aligned}
& =380000 \times 0.35 \\
& =\$ 133000 \\
& \text { Total tax }=2700+11250+133000 \\
& \quad=\$ 146950
\end{aligned}
$$

Simple interest

When money is lent by a bank or other lender, whoever borrows the money normally makes a payment, called interest, for the use of the money.

The amount of interest paid depends on:

- the principal, which is the amount of money borrowed
- the rate at which interest is charged
- the time for which the money is borrowed.

This section will deal only with simple interest. In simple interest transactions, interest is paid on only the original amount borrowed.
Conversely, if a person invests money in a bank or elsewhere, the bank pays the person interest because the bank uses the money to finance its own investments.

Formula for simple interest

Suppose that I borrow $\$ P$ for T years at an interest rate of R per annum.

$$
\begin{aligned}
\text { Interest paid at the end of each year } & =P \times R \\
\text { Total interest, } \$ I \text {, paid over } T \text { years } & =P \times R \times T \\
& =P R T
\end{aligned}
$$

This gives us the well-known simple interest formula.

$$
I=P R T \quad(\text { Interest }=\text { principal } \times \text { rate } \times \text { time })
$$

Note: The interest rate is normally given per year, so the time must also be written in years. In some books, R is written as $r \%$.
'Per annum' means 'per year'. It will sometimes be abbreviated to 'p.a.'.

Example 6

Find the simple interest on $\$ 16000$ for eight years at 7.5% p.a.

Solution

$$
\begin{aligned}
I & =P R T \\
& =16000 \times 7.5 \% \times 8 \\
& =16000 \times 0.075 \times 8 \\
& =9600
\end{aligned}
$$

Thus, the simple interest is $\$ 9600$.

Reverse use of the simple interest formula

There are four pronumerals in the formula $I=P R T$. If any three are known, then substituting them into the simple interest equation allows the fourth to be found.

Example 7

John borrows $\$ 120000$ from his parents to put towards an apartment. His parents agree that John should only pay simple interest on what he borrows. Ten years later, John repays his parents $\$ 216000$, which includes simple interest on the loan. What was the interest rate?

Solution

$P=120000$ and $T=10$.
The total interest paid was $\$ 216000-\$ 120000=\$ 96000$, so $I=96000$

$$
\begin{aligned}
I & =P R T \\
96000 & =120000 \times R \times 10 \\
R & =\frac{96000}{1200000} \times \frac{100}{1} \% \quad \text { (Interest rates are normally written as percentages.) } \\
& =8 \%
\end{aligned}
$$

The interest rate was 8%.

Simple interest formula

- Suppose that a principal $\$ P$ is invested for T years at an interest rate R p.a. Then the total interest $\$ I$ is given by:

$$
I=P R T
$$

- If the interest rate R is given per year, the time T must be given in years.
- The formula has four pronumerals. If any three are known, the fourth can be found by substitution and solving the resulting equation.

Exercise 1A

1 Express each percentage as a decimal.
a 56%
b 8.2%
c 12%
d 3.75%
e 215%
f 0.8%
g $88 \frac{1}{4} \%$
h $\frac{7}{8} \%$

2 Express each percentage as a fraction in lowest terms.
a 45%
b 64%
c $67 \frac{1}{2} \%$
d $66 \frac{2}{3} \%$
e 8.25%
f 5.6%
g 120%
h 150%
i 7.25%
j $12 \frac{3}{4} \%$
k $\frac{1}{2} \%$
l 7.8%

3 Express each fraction or decimal as a percentage.
a $\frac{4}{5}$
b $\frac{7}{8}$
c $\frac{7}{16}$
d $1 \frac{1}{2}$
e $\frac{9}{20}$
f $\frac{5}{3}$
g 0.46
h 0.025
i 1.4
j 1.125
k 0.00075
l $2 \frac{1}{4}$

4 Copy and complete this table.

	Percentage	Fraction	Decimal
	a	64%	
b		$\frac{3}{5}$	
c			
d	20.5%		0.16
e			1.4
f		$\frac{5}{8}$	

5 Evaluate each amount, correct to two decimal places.
a 15% of 60
b 36% of 524
c 120% of 436
d 140.5% of 720
e 3.8% of 73
f 0.5% of 220

6 Evaluate each amount, correct to the nearest cent where necessary.
a 52% of $\$ 50$
b 24.2% of $\$ 1050$
c 110% of $\$ 1590$
d 0.30% of $\$ 900$
e $8 \frac{1}{4} \%$ of $\$ 2000$
f $\frac{3}{4} \%$ of $\$ 1060$

7 Find what percentage the first quantity is of the second quantity, correct to one decimal place.
a $9 \mathrm{~km}, 150 \mathrm{~km}$
b $\$ 5, \$ 400$
c $28 \mathrm{~kg}, 600 \mathrm{~kg}$
d $80 \mathrm{~m}, 50 \mathrm{~m}$

8 Find what percentage the first quantity is of the second quantity, correct to two decimal places. You will first need to express both quantities in the same unit.
a 48 cents, $\$ 10.00$
b $3.4 \mathrm{~cm}, 2 \mathrm{~m}$
c 28 hours, 4 weeks
d $250 \mathrm{~m}, 8 \mathrm{~km}$
e $40 \mathrm{~km}, 1250 \mathrm{~m}$
f 1 day, 2 years
9 There are 640 students at a primary school, 7% of whom have red hair. Calculate the number of students in the school who have red hair.

10 A sample of a certain alloy weighs 2.6 g .
a Aluminium makes up 58% of the alloy. What is the weight of the aluminium in the sample?
b The percentage of lead in the alloy is 0.28%. What is the weight of the lead in the sample?

11 A soccer match lasted 94 minutes (including injury time). If Team A was in possession for 65% of the match, for how many minutes and seconds was Team A in possession?

12 A football club with 15000 members undertook a membership drive, and the membership increased by 110%.
a How many new members joined the club?
b What is the size of the club's membership now?
13 Find the original quantity, given that:
a 5% of it is $\$ 24$
b 30% of it is 72 minutes
c 90% of it is 216 cm
d 7% of it is $\$ 15.26$
e 0.5% of it is 4 mm
f 15% of it is 56 mm
14 Sometimes customers pay a deposit on an item and then later pay the rest of the full price.
Find the full price when a deposit of $\$ 570$ is 30% of the full price.

15 Find the selling price if the commission and the commission rate are as given.
a Commission $\$ 46$, rate 8%
b Commission $\$ 724$, rate 5.6%

Example 3

16 Find the percentage profit or loss on costs in these situations.
a Costs $\$ 26000$ and sales $\$ 52000$
b Costs $\$ 182000$ and sales $\$ 150000$
17 a A company made a profit of $\$ 28000$, which was a 5.4% profit on its costs. Find the costs and the total sales.
b A company made a loss of $\$ 750000$, which was a 6.5% loss on its costs. Find the costs and the total sales.

18 This question uses the income tax rates in the fictional nation of Plusionta. They are:

- There is no tax on the first $\$ 12000$ that a person earns in any one year.
- From $\$ 12001$ to $\$ 30000$, the tax rate is 15 c for each dollar over $\$ 12000$.
- From $\$ 30001$ to $\$ 75000$, the tax rate is 25 c for each dollar over $\$ 30000$.
- For incomes exceeding $\$ 75000$, the tax rate is 35 c for each dollar over $\$ 75000$.
a Find the income tax payable on:
i $\$ 9000$
ii $\$ 15000$
iii $\quad \$ 38000$
iv $\$ 400000$
b What percentage of each person's income was paid in income tax in parts i-iv of part a?
c Find the income if the income tax on it was:
i $\$ 1580$
ii $\quad \$ 3860$
iii $\$ 15200$
iv $\$ 15000$
$19 \$ 20000$ is invested at 8% p.a. simple interest for five years.
a How much interest will be earned each year?
b Use the formula $I=P R T$ to find how much interest will be earned over the five-year period.

20 Find the total simple interest earned in each investment.
a $\$ 4000$ for three years at 6% p.a.
b $\$ 7500$ for six years at 4.5% p.a.
21 Find the rate R in each simple interest investment.
a Interest of $\$ 7200$ on $\$ 8000$ for 12 years
b Interest of \$3400000 on \$12500 000 for four years
22 Find the time T involved in each simple interest investment.
a Interest of $\$ 2500$ on $\$ 1000$ at 5% p.a. b Interest of $\$ 91200$ on $\$ 30000$ at 8% p.a.
23 Find the principal P in each simple interest investment.
a Interest of $\$ 4320$ at 4.8% p.a. for six years
b Interest of $\$ 5020$ at 6.75% p.a. for three years

B
 Percentage increase and decrease

When a quantity is increased or decreased, the change is often expressed as a percentage of the original amount.

This section reviews a concise method of dealing with percentage increase and decrease. The method will be applied in various ways throughout the remaining sections of the chapter.

Percentage increase

The Shining Path Cleaning Company made a profit of \$421000 last year, and increased its profit this year by 23%.

We can find the new profit in one step by using the fact that the new profit is $100 \%+23 \%=123 \%$ of the old profit.

$$
\begin{aligned}
\text { New profit } & =421000 \times 123 \% \\
& =421000 \times 1.23 \\
& =\$ 517830
\end{aligned}
$$

When using a calculator, this is a simpler method than calculating the profit separately and adding it on. It will also allow us to handle repeated increases more easily and will make it simpler to reverse the process.

Percentage decrease

The same method can be used to calculate percentage decreases. For example, Grey Gully Station recently sold 41% of its 2288 head of cattle to the meatworks.

We can calculate how many head of cattle the station now has by using the fact that $100 \%-41 \%=59 \%$ of its cattle remain.

$$
\begin{aligned}
\text { Number of remaining head of cattle } & =2288 \times 59 \% \\
& =2288 \times 0.59 \\
& \approx 1350 \text { (Correct to the nearest integer. })
\end{aligned}
$$

Percentage increase and decrease

- To increase an amount by, say, 15%, multiply by $1+0.15=1.15$.
- To decrease an amount by, say, 15%, multiply by $1-0.15=0.85$.

Finding the percentage increase or decrease

The method used in the following example is in keeping with the other methods covered in this chapter. It requires fewer calculations than finding the actual increase or decrease and then expressing that change as a percentage of the original amount. In all cases, subtracting the calculated percentage by 100% determines the percentage change.

Example 8

The water stored in the main Warrabimbie Dam has increased from 1677 gigalitres to 2043 gigalitres in three months. What percentage increase is this?

Solution

$$
\begin{aligned}
\frac{\text { New storage }}{\text { Old storage }} & =\frac{2043}{1677} \times \frac{100}{1} \% \\
& \approx 121.82 \%(\text { Correct to the nearest } 0.01 \% .)
\end{aligned}
$$

Thus, the storage has increased by about $121.82 \%-100 \%=21.82 \%$.

Reversing the process to find the original amount

Harry claims that his mathematics mark of 78 constitutes a 45% increase on his previous mathematics mark. What was his previous mark?
This mark is $100 \%+45 \%=145 \%$ of the previous mark.
Hence, this mark $=$ previous mark $\times 1.45$
Reversing this, previous mark $=$ this mark $\div 1.45$

$$
\begin{aligned}
& =78 \div 1.45 \\
& \approx 54 \text { (Correct to the nearest mark.) }
\end{aligned}
$$

Thus, to find the original amount, we divide by 1.45 , because dividing by 1.45 is the reverse process of multiplying by 1.45.

Exactly the same principle applies when an amount has been decreased by a percentage, as shown in the following example.

Example 9

The price of bananas has decreased by 70% over the last year to $\$ 3$ per kilogram. What was the price a year ago?

Solution

The new price is $100 \%-70 \%=30 \%$ of the old price.
Hence, new price $=$ old price $\times 0.30$
Reversing this, old price $=$ new price $\div 0.30$

$$
\begin{aligned}
& =3.00 \div 0.3 \\
& =\$ 10 \text { per kilogram }
\end{aligned}
$$

Example 10

Ria has had mixed results with the shares that she bought three years ago. Shares in White Manufacturing rose 37% to $\$ 14.56$, but shares in Black Tile Distributors fell 28% to $\$ 8.76$. Find the prices she originally paid for these two shares, correct to the nearest cent.

Solution

White Manufacturing shares are now $100 \%+37 \%=137 \%$ of their previous value.
Thus, new value $=$ original price $\times 1.37$
Reversing this, original price $=14.56 \div 1.37$ $\approx \$ 10.63$ (Correct to the nearest cent.)
Black Tile Distributors shares are now $100 \%-28 \%=72 \%$ of their original value.
Thus, new value $=$ original price $\times 0.72$
Reversing this, original price $=8.76 \div 0.72$
$\approx \$ 12.17$ (Correct to the nearest cent.)

Finding the original amount

- To find the original amount after an increase of, say, 15%, divide the new amount by $1+0.15=1.15$.
- To find the original amount after a decrease of, say, 15%, divide the new amount by $1-0.15=0.85$.

Discounts

It is common for a shop to discount the price of an item. This can be done to sell stock of a slowmoving item more quickly, or simply to attract customers into the shop.

Discounts are normally expressed as a percentage of the original price.

Example 11

The Tie Knot Shop is expecting new stock and needs to make room on its shelves. It has discounted all its prices by 45% to try to sell some of its existing stock.
a What is the discounted price of a tie with an original price of $\$ 90$?
b What was the original price of a tie with a discounted price of $\$ 90$?

Solution

The discounted price of each item is $100 \%-45 \%=55 \%$ of the old price.
a Discounted price $=$ original price $\times 0.55$

$$
\begin{aligned}
& =90 \times 0.55 \\
& =\$ 49.50
\end{aligned}
$$

b Original price $=$ discounted price $\div 0.55$
$=90 \div 0.55$
$\approx \$ 163.64$
(Correct to the nearest cent.)

The GST

In 1999 the Australian Government introduced a Goods and Services Tax, or GST for short. This tax applies to nearly all goods and services in Australia.
The current rate of GST is 10% of the pre-tax price of the good or service.

- When GST applies, GST is added to the pre-tax price. This is easily done by multiplying by 1.10 .
- Conversely, if a quoted price already includes the GST, the pre-tax price is obtained by dividing by 1.10 .

Example 12

The current GST rate is 10% of the pre-tax price.
a The pre-tax price of a large fridge is $\$ 2150$. What will the fridge cost after GST is added, and how much will be paid to the government?
b I recently paid $\$ 495$ to have a tree pruned. What was the price before adding GST, and how much GST was paid to the government?

Solution

The after-tax price is 110% of the pre-tax price.
a After-tax price $=2150 \times 1.10$

$$
=\$ 2365
$$

$$
\begin{aligned}
\text { Tax } & =2365-2150 \\
& =\$ 215
\end{aligned}
$$

b Pre-tax price $=495 \div 1.10$

$$
=\$ 450
$$

$$
\begin{aligned}
\mathrm{Tax} & =495-450 \\
& =\$ 45
\end{aligned}
$$

$$
\text { Alternatively, } \begin{aligned}
\operatorname{tax} & =2150 \times 0.1 \\
& =215
\end{aligned}
$$

$$
\begin{aligned}
\text { After-tax price } & =\$ 2150+\$ 215 \\
& =\$ 2365
\end{aligned}
$$

(Divide by 1.10 to reverse the process.)

Inflation

The prices of goods and services in Australia and other countries usually increase by a small amount every year. This gradual rise in prices is called inflation, and is measured by taking the average percentage increase in the prices of a large range of goods and services.
Other things, such as salaries and pensions, are often adjusted automatically every year to take account of inflation.

High rates of inflation are damaging to society, and governments generally try to keep inflation low.

Example 13

The economy in Espirito Santo is booming as a result of its mineral exports, but unfortunately, with a change of government, inflation has also taken hold. Last year inflation was 28%, meaning that on average, prices have increased by 28% over the last year.
a If the average winter electricity bill was $\$ 460$ last year, give an estimate of this year's bill, based on the inflation rate.
b If a new Hunter Flash station wagon now costs $\$ 38000$, give an estimate of its cost a year ago, based on the inflation rate, correct to the nearest $\$ 100$.

Solution

We estimate this year's prices as $100 \%+28 \%=128 \%$ of last year's prices.
a Estimate of this year's bill $=460 \times 1.28$

$$
\approx \$ 588.80
$$

b Estimate of cost last year $=38000 \div 1.28$
$\approx \$ 29700$ (Correct to the nearest $\$ 100$.)

Exercise 1B

1 Increase each amount by the given percentage.
a \$570, 10\%
b \$9320, 5\%
c $\$ 456,6 \%$
d $\$ 3120,8 \%$

2 Decrease each amount by the given percentage.
a $\$ 9000,10 \%$
b $\$ 4560,5 \%$
c $\$ 826,3 \%$
d \$9520, 4\%

3 Traffic on all roads has increased by an average of 12% during the past 12 months. By multiplying by $112 \%=1.12$, estimate the number of vehicles now on a road where the number of vehicles a year ago was:
a 32000 per day
b 153000 per day
c 248 per day

4 Rainfall across Victoria has decreased over the last 10 years by about 38%. By multiplying by $62 \%=0.62$, estimate, correct to the nearest mm , the annual rainfall this year at a place where the rainfall 10 years ago was:
a 700 mm
b 142 mm
c 1268 mm

5 The number of shops in different shopping centres in Borrington changed from 2011 to 2012, but by quite different percentage amounts. Find the percentage increase or decrease in the number of shops where the numbers during 2011 and 2012, respectively, were:
a 200 and 212
b 85 and 160
c 156 and 122
d 198 and 110

6 a An amount is decreased by 10% and the new amount is $\$ 567$. What was the original amount?
b An amount is increased by 10% and the new amount is $\$ 5676$. What was the original amount?

7 Phoenix Finance Pty Ltd recently issued bonus shares that increased by 14% the number of shares held by each of the company's shareholders. By dividing by $114 \%=1.14$, find the original holding of a shareholder who now holds:
a 228 shares
b 8321 shares
c 77682 shares

9 A clothing store is offering a 35% discount on all its summer stock. Find the discounted price of an item with a marked price of:
a $\$ 80$
b $\$ 48$
c $\$ 680$
d $\$ 1.60$

10 A furniture shop is offering a 55\% discount at its end-of-year sale. Find the original price of an item with a discounted price of:
a $\$ 1400$
b \$327
c $\$ 24.50$

11 Mr Brown bought parcels of shares in June last year. He has a spreadsheet showing the value at which he bought his shares, the value at 31 December last year, and the percentage increase or decrease in their value. (Decreases are shown with a negative sign.) Unfortunately, a virus has corrupted one entry in each row of his spreadsheet. Help him fix his spreadsheet by calculating the missing values, correct to two decimal places.

Company	Value at purchase	Value at 31 December	Percentage increase
\mathbf{a}	$\$ 20000$		40%
\mathbf{b}	$\$ 14268$		-58%
\mathbf{c}	$\$ 3128.72$		341.27%
\mathbf{d}		$\$ 80000$	15%
\mathbf{e}	$\$ 50000$	$\$ 32516.24$	258.3%
\mathbf{f}	$\$ 21625$	$\$ 52000$	-92.29%
\mathbf{g}	$\$ 48372.11$	$\$ 34648$	
\mathbf{h}		$\$ 40072.11$	
\mathbf{i}			

